Bachelor of Engineering (Honours) in Structural Engineering

THIRD YEAR: JANUARY 2008

SEMESTER 1

STRUCTURAL ANALYSIS III

John Turner, B.E., M.Eng.Sc., M.I.E.I.
Joseph Kindregan, BE
Colin Caprani, Ph.D., B.Sc.(Eng.), Dip.Eng., C.Eng., M.I.E.I., M.I.A.B.S.E., M.I.Struct.E.

Someday, XXth January, 09.30 a.m. to 12.30 p.m.

Answer all of the following three questions.
Question 1 carries 20 marks; Questions 2 and 3 carry 40 marks each.
Time Allowed : 2 Hours

Given:

1. (a) Classify each of the structures shown in Fig. Q1(a), indicating whether the structure is unstable or stable and statically determinate or indeterminate (giving the degree of indeterminacy).
(10 marks)

FG O1(0)(i)

FTG Q1(a)(ii)
(b) Determine the degree of kinematic indeterminacy of the structures shown in Fig. Q1(b), stating briefly reasons for your answer and any assumptions made about axial deformations.
(10 marks)

$F / G Q 1(b)(i)$

FF $01(b)(i i)$
2. Using Moment Distribution:
(i) Determine the bending moment moments for the frame in Fig. Q2;
(ii) Draw the bending moment diagram for the frame, showing all important values;
(iii) Draw the deflected shape diagram for the frame.
(40 marks)

3. For the frame shown in Fig. Q3, using the Moment-Area Method (Mohr's Theorems):
(i) Draw the bending moment diagram;
(ii) Determine the horizontal deflection of joint D;
(iii) Draw the deflected shape diagram for the frame.

Note:

You may neglect axial effects in the members.
Take $E I=4 \times 10^{3} \mathrm{kNm}^{2}$ for all members.

FIG. Q3

Fixed-End Moments

Loading

M_{A}	Configuration	M_{B}
$+\frac{P L}{8}$		$-\frac{P L}{8}$
$+\frac{w L^{2}}{12}$		$-\frac{w L^{2}}{12}$
$+\frac{P a b^{2}}{L^{2}}$		$-\frac{P a^{2} b}{L^{2}}$
$+\frac{3 P L}{16}$		-
$+\frac{w L^{2}}{8}$		-
$+\frac{\operatorname{Pab}(2 L-a)}{2 L^{2}}$		-

Displacements

$M_{\text {A }}$	Configuration	M_{B}
$+\frac{6 E I \Delta}{L^{2}}$		$+\frac{6 E I \Delta}{L^{2}}$
$+\frac{3 E I \Delta}{L^{2}}$		-

Displacements

Configuration	Translations	Rotations
	$\delta_{C}=\frac{5 w L^{4}}{384 E I}$	$\theta_{A}=-\theta_{B}=\frac{w L^{3}}{24 E I}$
	$\delta_{C}=\frac{P L^{3}}{48 E I}$	$\theta_{A}=-\theta_{B}=\frac{P L^{2}}{16 E I}$
	$\delta_{C} \cong \frac{P L^{3}}{48 E I}\left[\frac{3 a}{L}-4\left(\frac{a}{L}\right)^{3}\right]$	$\begin{aligned} & \theta_{A}=\frac{P a(L-a)}{6 L E I}(2 L-a) \\ & \theta_{B}=-\frac{P a}{6 L E I}\left(L^{2}-a^{2}\right) \end{aligned}$
	$\delta_{C}=\frac{M L^{2}}{3 E I} a(1-a)(1-2 a)$	$\begin{aligned} & \theta_{A}=\frac{M L}{6 E I}\left(3 a^{2}-6 a+2\right) \\ & \theta_{B}=\frac{M L}{6 E I}\left(3 a^{2}-1\right) \end{aligned}$
	$\delta_{B}=\frac{w L^{4}}{8 E I}$	$\theta_{B}=\frac{w L^{3}}{6 E I}$
	$\delta_{B}=\frac{P L^{3}}{3 E I}$	$\theta_{B}=\frac{P L^{2}}{2 E I}$
	$\delta_{B}=\frac{M L^{2}}{2 E I}$	$\theta_{B}=\frac{M L}{E I}$

